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1 Introduction

In the n-player rent-seeking contest (Tullock, 1980), a given set of n ≥ 2 players

compete to get hold of a rent of value V > 0. The effort exerted by contestant

i ∈ {1, . . . , n} is denoted by xi ≥ 0. Normalizing the value of the rent to unity,

contestant i’s payoff is given as

Πi(x1, . . . , xn) =
xR
i

xR
1 + . . .+ xR

n

− xi,

where R > 0 is the usual parameter, and the ratio is read as 1/n if x1 = . . . =

xn = 0. In any symmetric equilibrium,1

x∗
1 = . . . = x∗

n =
n− 1

n2
R.

Moreover, this equilibrium exists if and only if R ∈ (0, R∗(n)], where

R∗(n) =
n

n− 1
∈ (1, 2].

In an asymmetric equilibrium, however, a strict subset consisting ofm < n active

players exert the same positive effort, while the remaining, inactive players exert

zero effort (Pérez-Castrillo and Verdier, 1992). This type of equilibrium may arise

if the contest technology exhibits increasing returns, i.e., if R > 1. Thus, the

prediction here is a club of active rent-seekers, with outsiders being discouraged

to even try to get hold of the rent. An asymmetric equilibrium is known to

exist under two conditions, viz. that active players break even, and inactive

players find it optimal to stay out. While the first condition is analogous to

the parameter restriction for the symmetric equilibrium, the second condition is

more complicated and represented by the rather “ugly” inequality

RR (m− 1)R

m2R−1
≥ (R− 1)R−1

RR
. (1)

1In this paper, we focus on equilibria in pure strategies.
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Cornes and Hartley (2005) pointed out that, in the relevant domain, condition

(1) becomes less stringent as m increases, which intuitively means that keeping

outsiders out is easier for larger clubs. This observation leads to useful con-

straints on m under which an asymmetric equilibrium exists. However, it has

to our knowledge not been formally studied how condition (1) depends on the

contest technology. Thus, the set of parameter values R for which an asymmet-

ric equilibrium with m < n players exists has not really been well-understood so

far.2

In this paper, we revisit the n-player Tullock contest with homogeneous valua-

tions and strictly increasing returns. It is shown that, for any m ∈ {2, . . . , n−1},

there exists a lower threshold value R∗(m) ∈ (1, R∗(m)) such that an asym-

metric equilibrium with precisely m < n active players exists if and only if

R ∈ [R∗(m), R∗(m)]. Our contribution is, consequently, the formal proof that

inequality (1) is monotone also with respect to R. Intuitively, with a larger R,

competition for the rent within the club becomes tighter, which makes it even

harder for outsiders to enter. Our main result therefore clarifies the nature of

the conditions for the existence of asymmetric pure strategy equilibria in the

n-player rent-seeking contest.

The analysis is extended in three ways. First, we show that the lower bound

R∗(m) is strictly declining in m. Given that the same is true for the upper bound

R∗(m), this means that the closed interval [R∗(m), R∗(m)] in the parameter space

over which asymmetric equilibria with precisely m < n active players exist is

shifting downwards as m goes up. Second, we show that

R∗(m+ 1) > R∗(m) (2)

2For example, Ryvkin (2007, Sec. 3) offered valuable intuition and numerical illustration,
though without formal proofs.
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for all m ≥ 2, which implies that the respective intervals in the parameter space

over which an asymmetric equilibrium with precisely m < n active players exists

jointly cover the interval [R∗(n − 1), 2]. Given that the symmetric equilibrium

definitely exists for R < R∗(n− 1), these observations amount to an alternative

proof for an important existence result for pure strategy equilibria in contests

with increasing returns (Cornes and Hartley, 2005, Lem. 1). Third and finally,

we derive the conditions on the parameter R for the existence of a unique pure

strategy equilibrium in the n-player rent-seeking contest. In sum, these results

provide a comprehensive characterization of the equilibrium set of the n-player

rent-seeking contest with homogeneous valuations and increasing returns.

The remainder of this paper is structured as follows. Section 2 reviews prior

work. Section 3 states our main result. Section 4 offers extensions. The Appendix

contains a technical proof.

2 Review of Prior Work

Prior work characterized the best-response correspondence as well as the condi-

tions for the existence of an asymmetric pure strategy equilibrium with m < n

active players.

Proposition 1 (Pérez-Castrillo and Verdier, 1992; Cornes and Hartley,

2005). Suppose that R > 1. Then, the following holds:

(i) Being active is a best response for contestant i if and only if

∑
j ̸=i

xR
j ∈

(
0, (R−1)R−1

RR

]
.

(ii) In any equilibrium with precisely m active players, x∗
i =

m−1
m2 R, for any active

contestant i.
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(iii) An equilibrium with m ∈ {2, . . . , n− 1} active contestants exists if and only

if R ≤ 2 and

m ∈ {m∗(R), . . . ,m∗(R)},

where m∗(R) is the lowest integer satisfying inequality (1), and m∗(R) is the

largest integer satisfying m ≤ R
R−1

.

Proof. (i) See Pérez-Castrillo and Verdier (1992, Prop. 1). (ii) See Pérez-Castrillo

and Verdier (1992, Prop. 3). (iii) See Cornes and Hartley (2005, Thm. 7).

The proposition above allows to understand why relationship (1) captures the

equilibrium condition for inactive players. The right-hand side of that inequality

corresponds to the activity cutoff specified in part (i) of the proposition, while

the left-hand side of that inequality corresponds to the aggregate
∑m

i=1 x
R
i that

results from the equilibrium efforts characterized in part (ii). Inactivity is optimal

if the left-hand side weakly exceeds the right-hand side.

Proposition 1 is useful in these and other ways. However, as has been ex-

plained in the Introduction, the characterization of the equilibrium set accom-

plished by Proposition 1 remains partial because it does not allow to easily

characterize the range of R for which an asymmetric equilibrium with m active

players exists in the n-player rent-seeking contest.

3 Main Result

The main result of the present paper is the following.

Proposition 2. There exists a lower threshold value R∗(m) ∈ (1, R∗(m)) such

that an asymmetric equilibrium with precisely m ∈ {2, . . . , n− 1} active contes-

tants exists if and only if R ∈ [R∗(m), R∗(m)].
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Proof. As has been discussed in the Introduction, an asymmetric equilibrium

with precisely m ∈ {2, . . . , n− 1} active contestants exists in the n-player rent-

seeking contest if and only if (i) active players break even, and (ii) inactive

players find it optimal to stay out. The first condition amounts to R ≤ R∗(m).

As for the second condition, suppose without loss of generality that contestants

i ∈ {1, . . . ,m} are active. Then, by Proposition 1,

x∗
1 = . . . = x∗

m =
m− 1

m2
R.

Therefore,
m∑
i=1

xR
i =

(m− 1)R

m2R−1
RR,

so that remaining inactive is optimal for any contestant i ∈ {m + 1, . . . , n} if

and only if inequality (1) holds true. Taking the logarithm on both sides, this

inequality is seen to be equivalent to

2R lnR +R ln(m− 1)− (R− 1) ln(R− 1)− (2R− 1) lnm ≥ 0.

In the limit R → 1, we have (R − 1) ln(R − 1) → 0, so that the inequality fails

to hold. On the other hand, at R = R∗(m), any active contestant has a payoff

of zero. Clearly, then, a passive contestant cannot profitably enter. Thus, the

inequality holds strictly at R = R∗(m). Note further that

∂

∂R
(2R lnR +R ln(m− 1)− (R− 1) ln(R− 1)− (2R− 1) lnm)

= 2 lnR− 2 lnm− ln (R− 1) + ln (m− 1) + 1

= ln

(
R2(m− 1)e

(R− 1)m2

)
,

where e = exp(1) ≈ 2.71828. To establish monotonicity, it therefore suffices to

show that, in the relevant domain for R,

R2(m− 1)e

(R− 1)m2
> 1.
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We know that m ≤ R
R−1

, hence, it is sufficient to show that R(m−1)
m

> 1
e
, which

is clearly the case. Therefore, there indeed exists a threshold value R∗(m) ∈

(1, R∗(m)) with the stated property.

Table 1 shows the values of R∗(m) and R∗(m) for m ∈ {2, . . . , 10}. For instance,

an asymmetric equilibrium with m = 3 active players exists in a contest with

n > 3 players if and only if R ∈ [R∗(3), R
∗(3)] = [1.16531, 1.5000].3

Table 1: Parameter ranges for asymmetric equilibria

4 Extensions

As extensions, we discuss the comparative statics (Subsection 4.1), an alternative

proof of an existence result in Cornes and Hartley (2005) (Subsection 4.2), and

conditions for the uniqueness of the equilibrium (Subsection 4.3).

3Notably, the symmetric equilibrium exists for any R ≤ R∗(n), i.e., even if R < R∗(n). The
reason for the relaxed conditions is that, in the case n = m, there are no potential entrants
around which makes it easier to have the equilibrium.
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4.1 Comparative Statics

As noted before, the upper bound R∗(m) = m
m−1

is strictly declining in m,

starting from R∗(2) = 2 and approaching 1 as m → ∞. The following result

shows that the comparative statics of the lower bound is similar.

Proposition 3. R∗(m) is strictly declining in m, with limm→∞R∗(m) = 1.

Proof. To see why R∗(m) is strictly monotone in m, note that R = R∗(m) solves

2R lnR +R ln(m− 1)− (R− 1) ln(R− 1)− (2R− 1) lnm = 0.

Implicit differentiation shows that

dR∗(m)

dm
= − 1− (m− 2)(R− 1)

m (m− 1) ln R2(m−1)e
(R−1)m2

.

Now, from R = R∗(m) < R∗(m) = m
m−1

, it follows that 1− (m− 2)(R− 1) > 0.

By (3), also the denominator is positive. Therefore, dR∗(m)/dm < 0, as has

been claimed. The limit property for R∗(m) follows from R∗(m) ∈ (1, R∗(m))

and limm→∞R∗(m) = 1.

Essentially the same proof shows that m∗(R) is strictly declining in R, which

complements Proposition 1.

4.2 An Alternative Proof of Cornes and Hartley (2005,
Lem. 1)

Cornes and Hartley (2005, Lem. 1) observed that, regardless of the number of

players n ≥ 2, a pure strategy equilibrium exists if and only if R ≤ 2. The

original proof is constructive. An alternative proof is presented below.

Proposition 4 (Cornes and Hartley, 2005). An equilibrium exists in the

n-player rent-seeking contest if and only if R ≤ 2.
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Proof. Existence is standard for R ≤ 1. Let, therefore, R > 1. Given Proposition

2, it suffices to show that inequality (2) holds, for any m ≥ 2. This, however,

is equivalent to checking that inequality (1) holds at R = R∗(m + 1) = m+1
m

for

any m ≥ 2, which is a straightforward exercise detailed in the Appendix.

4.3 Equilibrium Uniqueness

Cornes and Hartley (2005) derived the conditions under which the equilibrium

in the n-player rent-seeking contest is unique. The following result restates those

conditions more explicitly as a constraint on the parameter R.

Proposition 5. In the n-player Tullock contest with homogeneous valuations,

the symmetric equilibrium is the unique pure strategy equilibrium if and only if

R ∈ (0, R∗(n− 1)).

Proof. The uniqueness of the pure strategy equilibrium for R ≤ 1 is again stan-

dard. For R > 1, the symmetric equilibrium is unique if and only if, for any

m ∈ {2, . . . , n− 1}, there is no asymmetric equilibrium, or using Proposition 2,

if and only if R ̸∈ [R∗(m), R∗(m)]. By Proposition 3, R∗(n − 1) ≤ . . . ≤ R∗(2).

Hence, for R < R∗(n − 1) < R∗(n), the symmetric equilibrium is indeed the

unique equilibrium. Next, from, R∗(2) = 2 and the proof of Proposition 4, it

follows that for any R ∈ [R∗(n − 1), 2], there exist asymmetric equilibria. This

proves the claim.

For illustration, consider again the simplest case where n = 3. The sym-

metric equilibrium exists for R ≤ R∗(3) = 1.50000. By Proposition 2, how-

ever, an asymmetric equilibrium with two active players exists if and only if

R ∈ [R∗(2), R
∗(2)] = [1.35050, 2.0000]. Therefore, equilibrium uniqueness ob-

tains if and only if R < R∗(2) = 1.35050.
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A Appendix

This appendix contains details omitted from the proof of Proposition 4. We

verify that the inequality

RR (m− 1)R

m2R−1
≥ (R− 1)R−1

RR

holds at R = m+1
m

. Substituting gives

RR(m− 1)R

m2R−1
=

(
m+1
m

)m+1
m (m− 1)

m+1
m

m
m+2
m

=
(m2 − 1)

m+1
m

m
2m+3

m

,

and

(R− 1)R−1

RR
=

m− 1
m

(m+1
m

)
m+1
m

=
m

(m+ 1)
m+1
m

.

Hence, the inequality is equivalent to

(
(m2 − 1)(m+ 1)

)m+1
m ≥ m

3m+3
m .

Raising both sides to the power m
m+1

simplifies it to (m2−1)(m+1) ≥ m3, which

factors as m(m− 1) ≥ 1. Since this is true for m ≥ 2, the inequality holds.
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